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ABSTRACT

The effect of the availability of alternative locations at which to participate in an activity
has long been recognized as affecting participation at a given site. In fact, it has been recognized
that either having a variety of alternatives around a person's origin or having a variety of
destinations around a possible destination means that origin and destination alternative factors
should be considered in modelling travel behaviour.

A number of desirable characteristics of alternative functions are discussed in this paper
and it is indicated that the particular class of alternative functions being considered satisfies each
condition under specific conditions. Ways are shown in which the approach to defining
alternative factors has been unnecessarily ad hoc.

The paper presents results that demonstrate that the coefficients (exponents of distance)
that some researchers have used in defining alternative factors mean that distant alternatives are
more important in determining people's behaviour than facilities that are close. The range of
value of exponents that result in close alternatives being more important to people's behaviour than
distant alternative is defined.

PURPOSE
The purpose of this note is to discuss the formulation of, and the problems associated with,

an alternative-site function.
BACKGROUND

The seminal work on the use of alternative sites in travel modelling is probably Stouffer's
intervening opportunity model (1940). Stouffer argued that the reduction in the number of trips
to increasingly distant destinations was not a reaction to distance costs, but
rather a reflection of the successful competing for customers by nearer facilities over farther
facilities.

More recently, Grubb and Goodwin (1968) developed a techique for operationalizing the
concept of competing facilities as a component in recreation travel models. In their work on
visitation to reservoirs distributed around Texas, Grubb and Goodwin formulated a general
visitation equation:
( 1) Y = AX1

b1 X2
b2 X3

b3 X4
b4 X5

b5

WHERE
Y = the number of visitor days from origin i to reservoir j per unit of time;
X1= population of origin i;
X2= round trip travel costs between i and j;
X3= per capita income at i;
X4 = surface area of j;
X5= a variable measuring the effect of competing reservoirs available to users at origin i on

attendance at reservoir j, and
A,b1,...,b5 = parameters to be estimated.

In the context of this article the last variable, X5 , represents the major contribution of the
Grubb and Goodwin study. Their competing-site or alternative-site function, to measure the
impact of competition on reservoir j, was operationalized as:
(2) X5(i) = Σk (log S(k)/D(i,k)) WHERE k=1 to n;
X5(i)= alternative-site factor for origin i, reflecting the existence of alternatives to destination j;
S(k) = surface area of competing reservoir k;



D(i,k) = distance between i and k;
n = number of reservoirs within 100 miles (an arbitrary cut-off distance) of origin i;

The expected sign of b5, the coefficient of X5 , in a least squares regression solution is
negative. Thus, attendance at reservoir j can be expected to decrease as: (1) the number of
alternative reservoirs (within 100 miles) increases; (2) the surface area of alternative reservoirs
increases; and/or (3) the distance to the alternative reservoirs decreases. Thus X5 Is intended to
reflect the competition from all other available reservoirs.

A number of authors have furthered this investigation by introducing alternative-site
factors into their recreation travel models. One of the most recently presented models that
utilized such a factor is a day-use visitation model developed by Cheung (see TN 1). Other
formulations which have been included in travel models were developed by Cesario, Goldstone
and Knetsch (1969), Stankey and Johnston (1969) and Elsner (1971). The effect of alternative
sites has also been approached by examining them in a trade-off context. This approach
considers the effect of alternative sites on the distribution of users among a system of competing
facilities. A few relevant examples of this approach include the Ontario Tourism and Outdoor
Recreation Plan Systems Model (1970), Wennergren and Nielsen (1970), Ullman and Volk
(1962) and Knetsch and Cesario (1970).
THEORY

Figure 1 is used to present a simple graphic illustration of the alternative-site problem and
some of the notations used in the following discussion of theoretical issues relating to the
development of alternative-site functions. The volume of visitor flow from i to j is usually
predicted on the basis of variables such as the population of I, the attractivity of j and the
distance between them. A closer modelling of reality requires the inclusion of some measure of
the competition of other facilities offering similar recreation experiences to the same user group.
This is the purpose of introducing an alternative-site factor.

The omission of such a factor in, for example, the simple gravity model (which includes
only measures of origin and destination characteristics, including distance, but not of alternative
destinations) leads to the following logical, but unrealistic conclusion. Consider a simple
unconstrained gravity model which predicts per capita use of a facility. If five more identical
facilities are developed at the same distance from an origin, the gravity model implies that total
per capita visitation at all sites wilt be six times as high as with one (i.e., it implies that demand
is infinitely elastic with respect to supply). An alternative-site function embodies the more
realistic assumption that total per capita visits may increase, but not at the same rate as the
proliferation of new facilities.

There is an exception to this scenario that deserves mentioning, especially in light of the
very high usage some recreation facilities receive. If a facility is being used to capacity for some
given activity, then the addition of one identical facility may result in a doubling in per capita
visit rates. This can be expected to occur whenever there is a latent demand for the services of a
new facility. The solution to this apparent problem is the recognition that if a facility is being
used to capacity, a gravity model is inappropriate. In this situation of very high demand and very
low supply, the appropriate use-level forecasting techniques should be based on capacity
measures.

Another consideration is that the reaction to alternative sites is largely a perceptual process.
Consider now that a user at some origin is evaluating a large number of sites around him. It is
quite feasible that, while he/she is able to distinguish among individual, nearby sites, she/he is
unable to distinguish individual sites in a distant resort region. If he/she decides to go to this



more distant region, his choice is based not on the sum of the attractions of the individual
facilities in this region but rather on his perception of that region as a single "facility".

Figure 1: Alternative sites and use of alternatives

However, it is reasonable to suggest that once this user has arrived in that region and
begins to make a choice between alternatives there, a second alternative-site function becomes
important, a destination alternative-site function. This function is distinct from the initial
alternative factor, which can be referred to as the origin alternative-site factor. The former is
used to suggest, for example, that different stretches of a distant, developed beachfront compete
with each other when (and only when) a user has arrived in the local area. Similarly, at home a
user may decide among several National Parks, but once she/he arrives at the park chosen there
may remain the choice between alternative campgrounds within that park.

It is possible to argue that this problem of perceiving at a distance differences between
closely situated parks is solved by the attractivity factor included in the Grubb and Goodwin
alternative factor formulation. However, the subsequent discussion shows that, in terms of the
decision-making strategy outlined by the authors, the way a decision is made as to how one
reacts either to comparable facilities competing with each other or to sub-units within a given
park or beach, is best understood by considering both origin and destination alternative-site
factors.
THE MATHEMATICS OF DEFINING AN ORIGIN OR DESTINATION ALTERNATIVE-
SITE FACTOR: SOME GENERALITIES

White the authors have argued for a recognition of the possibility of a two-stage decision
making process with regard to the ultimate choice of a recreation site, the general concepts and
mathematics underlying each stage do not differ. It is possible to begin this section by offering
three basic, important criteria against which any proposed alternative-site factor must be
measured:

1. The competitive strength of any given alternative in an alternative-site function should be
related to: (a) a measure of the attractiveness or utility of this alternative for a given
usage; (b) the relative accessibility of the alternative from the "origin" of visitors (either
their home or an equivalent point on the highway);

2. The magnitude of the alternative-site function should reflect some aggregate of the
individual alternatives; i.e. the competitive importance of the alternatives as a group is
directly related to some weighted total;

3. Any alternative-site factor should reflect the addition or subtraction of a new destination
area within the field of existing possibilities.



These criteria, however, are operationally imprecise and vague in that they do not state even the
direction of relationships between the variables.

Within the context of these general ideas, the aim of this paper is to describe how
alternative factors should be defined (explicitly) so that irrational assumptions about the human
decision-making process are avoided. The following mathematical derivations are presented as a
context in which to analyze the alternative-site factors suggested by some researchers. The
mathematics can thus be used as an example of the kind of matters that must be explicitly
considered in order to define an alternative-site factor in both a mathematically and
behaviourally acceptable manner.

Consider the following function which is a generalized Grubb and Goodwin alternative-
site function:
( 3 ) Xi=Σk ( Ak/F( Di,k))

WHERE k=1 to n
Xi = alternative-site function for some origin i;
Ak= attractivity of alternative site k;
F( Di,k))= a function of the distance between I and k; and
n = number of alternatives.

This equation suggests that an alternative-site function is defined by the sum of the ratios of
attractivities of sites to the distances of the sites from some origin. For an origin alternative-site
factor, the origin is the visitor's residence, a city or the center of population of some region. In
the case of a destination alternative-site factor the origin may be the point of arrival in the tourist
region: an airport, the edge of town, a visitors' information office or the entrance to a park.

The attractivities that appear in the numerator can be measured in any of a number of
ways, but current research in Canada suggests that, at least for the purpose of main-destination
visits to a site, attractivity measures are best estimated using the Cesario model (see TN 4). The
distance function F(Di,k) is usually considered to be positively monotonic. This function can be
based on several general measures: geographic distance, travel costs, travel time, or perceived
accessibility. For example, a visitor to an unfamiliar resort town may impute a smaller distance
to a facility whose location is on the main street, a couple of miles from him, than to a closer
facility whose address is on an unknown side street.

Equation 3 clearly satisfies the three criteria enumerated above. If, for example, a new site
is included within the area of available alternatives, the alternative-site function increases in
strength as the attractivity-distance ratio for the new site is added to those of the existing
alternatives. Also, the more attractive a given alternative is, the more important it is in
determining the value of the alternative-site function compared to other sites equidistant from the
point of reference, either an origin or destination. This statement is, of course, based on the fact
that if two sites enter into the formula and are at the same distance, the one with the larger
attractivity has a larger ratio of attractivity to distance and therefore adds a greater amount to the
alternative measure than the less attractive site. As for the relative accessibility of a given
destination, the inclusion of a distance function in the denominator indicates that as an
alternative destination gets further from a given origin, the alternative factor calculated is less
influenced by this given destination.

As a final point, it is desirable to discuss one apparent limitation of the alternative-site
function. Consider a region with two existing facilities serving one city, i, shown in Figure 2: In
this scenario a planner is attempting to decide between two possible sites for a new facility - one
fairly close to i (site B), the other more distant (site A) but otherwise identical to site B. In



forecasting expected use levels, the planner uses Equation 3 as a measure of the effect of
alternative sites on attendance at the new facility. Recalling the components of Equation 3, it is
clear that the value of the alternative-site factor is the same regardless of whether Site A or Site
B is chosen. Nevertheless attendance at B, ceteris paribus, would surely be higher than at A.
Now, some planners may feel intuitively that this is at least in part a reflection of A experiencing
greater competition from the intervening opportunities at sites 1 and 2, than would B, which is
closer to i than sites 1 and 2. This view implies that an alternative k has a different effect on trip
flows from i to a destination j, depending on whether Di,j is greater or less than Di,k. This in fact
is the basic assumption in Stouffer's intervening opportunities model, in which only places that
are closer to origin i than j is, are included in the operational definition of intervening
opportunities. All other sites are considered to have no competitive effect on trips to j. It is to be
argued below that this type of binary treatment of alternatives Leads to conclusions logically
inconsistent either with observed trip patterns or with the assumption of a uniform utility
function which is implicit in Equation 1.

However, before pursuing that argument, a more sophisticated equivalent to Stouffer's
definition of the alternative-site factor is considered. The United States Corps of Engineers
(1972) suggested:
(4) Xi = [1 +Σlog(Sk)/Di,k]2

for all log(Sk)/Di,k > log(Sk)/Di,k, i.≠.k for k=1 to n
WHERE the variables are the same as defined for Equation 2.

There are three differences between Equation 4 and Equation 3. First, only those ratios of log(Sk)
to Di,k which are greater than the ratio of log Sk to Di,k are included. In other words, if log(Sk)/Di,k
is less than log(Sk)/Di,k then the alternative site k is not considered as an alternative at all. One
(1) is added to the restricted summation to prevent Xi from equaling zero, since the Corps of
Engineers used 1/Xi as a regressor in their estimation of reservoir use. Also the squaring of the
quantity, one plus the summation, implies that the total effect of all substitutes increases at an
increasing rate.)

The intuitive feeling that sites 1 and 2 constitute greater competition to site A than site B,
reflects the assumption that the competitive strength of an alternative varies according to the
relative location and attractiveness of the destination j being considered. The implications of this
assumption are as follows. If it is argued that the volume of trip flows from origin i to j is
unaffected by any site k whose Ak/Di,k is less than A(j)/Di,k, then in a behavioural sense, this
implies that the population at I do not consider any site k to be an alternative to j if Ak/Di,k is less
than Aj/Di,k. The corollary of this is that there is no reason for any trips from i to j if there exists
any alternative k such that AkDi,k is greater than Aj/Di,k since the latter, by the above assumption,
does not constitute an alternative to and, therefore, competition for the former. In turn, and more
fundamentally, this implies that for any origin one would expect all park users of the same type
and with the same purpose to patronize the same park, since in all but very rare cases there is
only one site which maximizes Am/Di,m, m = 1 to n. Observation does support all users of the
same type and with the same purpose patronizing the same site and therefore observation
contradicts the above implication of deterministic choice behaviour. A way to reconcile the
deterministic behaviour implicit above with the reality of trip flows from i to more than one
destination is to assume interpersonal differences in people's estimations of sites' attractivities
and/or distances, so that the site with the maximum A(i)/D(i,j) will vary from person to person,
and trip choices will vary accordingly. However, as presently written, Equations 2 through 4 do
not allow for interpersonal differences in people's estimations of Aj and D i,j, j = 1 to n. Thus



Equation 4 and (by implication) the intervening opportunities model are internally inconsistent.

Figure 2: Sites and a proposed site for considering influence of alternatives

It might be argued by some that the idea expressed by the intervening opportunities model
and Equation 4 is basically sound as a macro model. The values generated are expected values
based on stochastic assumptions rather than deterministic predictions for individuals. Still, an
operational flaw in these models, however, is that they give no weight to sites whose Di,j or
Aj/Di,k are less than Di,j or Aj/Di,j. This could be overcome by giving smaller, but positive, weight
to alternatives with relatively low Di,k or Ak/Di,k. But this would require prior knowledge of the
sites' attractivity values such as in Equation 4 where Sk is assumed to be a surrogate for Ak. And
this leads to a type of circular reasoning. For example, if Ak (an attractivity factor) is to be
estimated using a model with an alternative-site function (such as a Cesario model), then the
estimates of attractivity depend on a knowledge of the alternative weighting factors which, in
turn, depend on the attractivity value.

Though some iterative procedure might eventually be devised to overcome this problem, it
is questionable if such an effort is merited since there is no behavioural evidence to suggest that
this (or any other form) of variable weighting of alternatives takes place in the human mind.
Therefore, a simpler assumption is made in the following discussion. Specifically, alternative
sites contribute to the alternative-site factor in direct proportion to the value of Ak/Di,k (or some
similar function). The result is that a weight of unity can be applied to each term in the
summation in Equation 3. In other words, the competitive strength of alternatives is assumed to
be a quality intrinsic to them and not something which varies according to the destination being
considered. Given this assumption, and returning to the hypothetical planning problem, the
greater usage of site B than A can still be explained in terms of site B having intrinsically greater
strength than site A against the competition from sites 1 and 2, on account of B's attractivity-
distance ratio exceeding A's.
THE CHOICE CF A DISTANCE FUNCTION AND A SET OF FACILITIES TO BE
CONSIDERED AS ALTERNATIVES TO A GIVEN FACILITY

Now that an alternative-site measure has been formulated, X i, which satisfies the criteria
for such a measure, it is tempting to accept it and use it without considering further the
behavioural implications of the measure. However, it is a simple matter to show that the function
has very different properties depending on the way F(Di,k) is defined. For example if:
(5) F(Di,k))= Di,k[a]
WHERE
Di,k = geographical distance between i and k, and a = some exponent to be estimated.
then the value of the exponent has a profound effect on what Xi suggests about the decision



making process. There are, in fact, two considerations:
1. how the universe of alternatives is defined (in areal terms),
2. what distance function should be used.

And, an important point to note is that the two issues cannot really be dealt with separately.
The question of the areal delimitation of the population of alternative sites was an issue in

both the Grubb-Goodwin (1968) and the Cheung (TN 1) studies. Their arbitrary resolution was
to define the population of alternative sites as that group of similar facilities located within i00
miles of the origin. Although arbitrary, Cheung did find empirical evidence that this radius was a
reasonable one for planning purposes. He found that 90 percent of day-use visitors to a group of
parks traveled less than 100 miles one-way to a park. From a relatively loose, practical viewpoint
one can ignore the existence of distant parks; out from a more precise, theoretical viewpoint one
can still acknowledge their influence, even if it is minimal, because of the visitor's reaction to
distance.

Whether people consider alternatives only within a certain distance is related to a
theoretical concern that has implications for defining alternative factors which are not pursued
here. So the reader is asked to keep in mind that the arguments presented do not adequately deal
with how people react to different distances (See TN 14). Early location and transportation
models typically presented the view that "economic man" was hyper-sensitive. For example,
consider two equally attractive parks, A and B. If A is located at 10 kilometers from a potential
user, and B is 10.1 kilometers from this user, these models argued that A would always be
chosen over B. A more realistic view of the perception of distance differentials is one that
describes the rational man as being threshold-sensitive. In the case just presented, most users
would not be sensitive to a margin of 0.1 kilometers. If, in a different situation, the facilities were
located within a few hundred meters of the user, a marginal increase of 0.1 kilometers could be
significant. This threshold is referred to in psychology as the just-noticeable-difference (j.n.d.),
and it has been shown in psychophysical experiments to be proportional to the magnitude of the
stimulus, in this case distance. If distance is implicitly used to define the set of parks that serve as
alternatives for another park (as it was used above) any number of distance functions may be
considered relevant.

Figure 3 shows a hypothetical distribution of parks around an origin. Ten rings, equally
spaced, surround an origin I. In the hinterland, covered by the rings, are a number of parks. For
purposes of this discussion they have been uniformly spaced on a rectangular grid. The distance
to any circle, j, from the origin, is DR(j) the distance to the next more distant circle from the
center is DR(j+1). The distance between any two adjacent circles (the width of any ring) is "w"
and this is constant. One unit of area has been sketched on the map and-is sized so that it
encompasses four parks. Thus the density of parks, "d", is four parks per unit area. If this square
area unit has sides of one unit, application of the Pythagorean Theorem indicates that w, the
width of the rings, is about 0.7 units. The outer circle encompasses the maximum distance that
one is physically able to drive round-trip in one day, with just a minimal amount of time spent at
a site. The extreme example would be the case where a user drives 110 kilometers per hour
(about 70 mph) for 12 hours, hops out and back into his car in a second (thereby qualifying as a
visitor) and drives home at 110 kilometers per hour for 12 hours. The outer ring, the physical
limit for a day-use trip, is 110 km x 12 hours = 1320 kilometers. In nearly all real-life day-use
instances, this physical limit is not even closely approximated. Its use, however, avoids drawing
a smaller arbitrary boundary based on intuition or limited knowledge of past behaviour. The
physical maximum also avoids the unrealistic and mathematically difficult situation of an infinite



travel surface.
One of the first things that is noticed when one examines the figure is that the successive

rings of equal width, moving away from the origin, include an increasing area. Given a uniform
distribution of parks in space, as shown, the further one goes away from the origin the greater
will be the number of sites included in a ring. The average number of parks per unit area is d, so
the number of parks that may be expected to be found between any two circles is:
(6) N = area of ring * density of parks

= [(2ΠDR(j) + 2ΠDR(j+1))/2)}(w)(d)
AND since 2ΠDR(j) ≈2ΠDR(j+1) if w is small compared to DR(j)

THEN:
(7) N ≈2ΠDR( j )( w )( d) ≈2ΠDR( j+1 )( w)( d)

WHERE N = expected number of parks in a ring; DR(j) = radius of inner circle;
DR(j+1) = radius of next outer circle; w = width of ring;
d = average park density.

If we assume all parks are equally attractive, the attractivity component in Equation 3 can
be taken as a constant, б, and the alternative-site function can be rewritten as:
(8) Xi = бΣk (1/F(Di,k)
WHERE б= attractivity of all alternative parks; a constant



If/ however, we let DR(j) >> W , then the distance from the origin i to all the alternatives in the
ring between j and j + 1 is approximately DR(j)≈DR(j+1). In other words, if the ring width is
sufficiently narrow, the distance to all parks in the ring is approximately equal to the distance to
either the inner or the outer boundary of that ring. Hence DR(j) can be substituted for Di,k in
Equation 8, where k is a park in the ring between circles j and j + 1. Using Equation 7 as an
estimate of the number of parks in any ring, Equation 8 can be rewritten as:
( 9 ) X(i ) = бΣk 2Π DR( j )( w )( d )/F( DR(j) j ) )
WHERE m - 1 = number of inner circles; and the summation is over m-1 inner circles; and the

other variables are as defined in Equation 3, 7, and 8.
Moving the constant terms outside the summation gives:

(10) X(i) = б(2Π )(w)(d)ΣDR(j)/F(DR(j))
WHERE the summation is over m-1 inner circles.
One question that was raised earlier, and remains unanswered is the choice of an

appropriate distance function in the alternative-site function F(DR(j)) in Equation 10. The most
common form of F(DR(j)) defines it as an exponential function, so that in the following section:
(11) X(i) = Σj DR(j)/DR(j)a

because F(DR(j)) = DR(j)a

with the summation over m-1 inner circles.
Table 1 is a summary of the values of X(i) from Equation 10 for different values of a. To

prepare the Tableбhas been set to unity, w = 0.7 units, d = 4 parks per square unit and DR(j)
ranges from 0.7 to 7.0 in increments of 0.7.

Examination of the cells in Table 1 permits one to draw behavioural inferences about each
value of a. For those values below unity, the nearer parks contribute relatively Little to the total
strength of the alternative–site factor. For an a = 0, approximately 50 percent of the competition
to some park comes from the large numbers of parks in outer zones 8, 9 and 10. Cheung
suggested using an exponent of 1 (one) in his Saskatchewan day–use model. Table 1 indicates in
this hypothetical case that, again, the nearer parks play a relatively small role in determining the
total alternatives perceived at the origin. Specifically, less than 50 percent of the total day–use
competition comes from the first six zones. Thus, if an exponent less than one is chosen for, the
researcher has, explicitly or implicitly, stated that the total number of parks within the maximum
physical driving range for day–use activity is more important than just the smaller number of
closer, more accessible parks. For example, when a=1, even though the attractivity-distance ratio
is considerably greater for a park in (for example) ring 2 than in ring 10, so that a park in ring 2
has two to three times the chance of being chosen than one in ring 10, there are about seven
times as many parks in ring 10 as in ring 2. As a result, there is a higher probability of zone 10
being visited more than zone 2.

An interesting consequence of this would be that a graph showing numbers of visitors (on
the y–axis) against destination distance (on the x–axis) would have a positive slope. In the past,
students of spatial interaction derived such curves and drew conclusions about the friction of
distance from the slope. It bears emphasis that the slope of this curve is so biased by the spatial
distribution of alternatives, as is vividly shown in this example, that it is quite useless in
estimating the friction of distance. In the present example the conclusion from the positive slope
would be that distance had positive rather than negative effect on usage, even though Equation
11 indicates the opposite. Even so, some current research based on more sophisticated methods
than the distance decay curve still ignores the biasing effect of the spatial distribution of
alternatives on trip flow data.



A different inference can be drawn from the results when “a” is greater than unity.
Distance and travel costs play much more important roles than previously, and can be considered
more important than the increasing number of parks or distance in influencing the probable
maximum distance a user will drive. The increase in the relative competitive advantage of nearer
sites increases rapidly with higher a-values. For an a = 2, most of the competition in this
example comes from the first three zones; for a = 3, most comes from the first zone; and for a =
5 nearly all comes from the very closest parks.

TABLE 1
SUMMARY OF THE EFFECTS
OF A CLASS OF ALTERNATIVE-SITE FUNCTIONS
Percent of Alternative-Site Function
Value Attributable to Each Ring

( inner) (outer)
a 1 2 3 4 5 6 7 8 9 10 X(i)
0 2 4 5 7 9 11 13 15 16 18 676.8
1/2 4 6 8 9 10 11 12 13 13 14 332.3
1 10 10 10 10 10 10 10 10 10 10 175.8
3/2 20 13 12 10 8 8 8 7 7 7 105.5
2 33 17 12 10 7 5 5 5 5 2 73.8
3 68 16 6 4 4 4 * * * * 54.5
5 93 5 2 * * * * * * * 77.4
* Less than 1%

Further interpretation of the higher a-values suggests that they may be appropriate for, for
example, the day-use activities of small children, the elderly, the handicapped and the otherwise
immobile. Conversely, very low a-values would more logically apply to highly mobile
individuals; and perhaps to a special class of day-users who may desire to visit several facilities
in one day.
CONCLUSION

The point of the preceding discussion is that there are behavioural implications that need to
be considered when making what may seem to be a strictly empirical decision. The use of an
alternative-site function in a day-use model necessitates the researcher having an explicit
awareness of his study population and activities. A recognition of the behavioural or human
forces operating in a recreation system should be considered, and used to evaluate the
implications of any given empirical solution. At the extreme, then, it is conceivable that a model
with a high R2 should be rejected for planning purposes because of possible misleading or
nonsensical behavioural interpretations of the empirically elegant model.


